AQA

A-LEVEL

Mathematics

Further Pure 4 - MFP4
Mark scheme

6360
June 2015

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
(a)	$\left\|\begin{array}{ccc} 1 & 3 & a \\ 2 & -4 & 7 \\ 2 & 2 & -2 \end{array}\right\|=1\left\|\begin{array}{cc} -4 & 7 \\ 2 & -2 \end{array}\right\|-2\left\|\begin{array}{cc} 3 & a \\ 2 & -2 \end{array}\right\|+2\left\|\begin{array}{cc} 3 & a \\ -4 & 7 \end{array}\right\|$ or $\quad(\mathbf{u} \times \mathbf{v}=)\left[\begin{array}{c}12 \\ 4 \\ -10\end{array}\right]$	M1		Correct expansion of triple scalar product or correct vector product
(b)(i)	$\begin{aligned} & =12 a+48 \\ & 12 a+48=0 \\ & a=-4 \end{aligned}$	A1 B1F	2	CAO Sets their expression equal to 0 and solves the resulting linear equation correctly
(ii)	$\begin{aligned} & {\left[\begin{array}{l} 1 \\ 2 \\ 2 \end{array}\right]=c\left[\begin{array}{l} 3 \\ -4 \\ 2 \end{array}\right]+d\left[\begin{array}{l} -4 \\ 7 \\ -2 \end{array}\right]} \\ & c=3 \end{aligned}$	M1		Forming a system of equations and solving to correctly find either cord
		A1		Both c and d correct
	$\mathbf{u}=3 \mathbf{v}+2 \mathbf{w}$	A1	3	A1 Correct linear combination stated NMS $\mathbf{u}=3 \mathbf{v}+2 \mathbf{w}$ scores 3 marks
	Total		6	

Q3	Solution	Mark	Total	Comment
(a)	c_{1} replaced by $\mathrm{c}_{1}+\mathrm{c}_{2}$ gives			
	$\left\|\begin{array}{ccc} a+b-c & b-c & -b c \\ b+a-c & a-c & -c a \\ -c+a+b & a+b & a b \end{array}\right\|$	M1		Combining columns or rows sensibly, working towards first factor
	$(a+b-c)\left\|\begin{array}{ccc} 1 & b-c & -b c \\ 1 & a-c & -c a \\ 1 & a+b & a b \end{array}\right\|$	A1		First factor correctly extracted
	r_{2} replaced by $r_{2}-r_{1}$ r_{3} replaced by $r_{3}-r_{1}$ $\left\|\begin{array}{ccc} 1 & b-c & -b c \\ 0 & a-b & -c a+b c \\ 0 & a+c & a b+b c \end{array}\right\|$			
	$\left\|\begin{array}{ccc} 1 & b-c & -b c \\ 0 & a-b & -c(a-b) \\ 0 & a+c & b(a+c) \end{array}\right\|$	m1		Combining rows or columns sensibly, working towards second factor
	$(a-b)(a+c)(a+b-c)\left\|\begin{array}{ccc} 1 & b-c & -b c \\ 0 & 1 & -c \\ 0 & 1 & b \end{array}\right\|$	A1		Three factors correctly extracted and remaining determinant correct
	$\left\|\begin{array}{ccc} 1 & b-c & -b c \\ 0 & 1 & -c \\ 0 & 1 & b \end{array}\right\|=b+c$	m1		Correct expansion to obtain final factor- dependent on previous M1 and m1
	Hence full factorisation $=$ $(a+b-c)(a-b)(a+c)(b+c)$	A1	6	Fully correct - CSO
(b)	Comparing gives $c=2$ and $b=3$	M1		Attempting to substitute $c=2$ and $b=3$ into their answer from part (a)
	Hence $5(a+1)(a-3)(a+2)(=0)$	A1F		Correct factors PI by correct values, provided FT is cubic equation in " a " with three linear factors
	$a=-2,-1,3$	A1	3	CSO must have 6 marks in part (a)
	Total		9	

Q4	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & \left\|\begin{array}{cc} 1-\lambda & -1 \\ 2 & 4-\lambda \end{array}\right\| \quad(=0) \\ & (1-\lambda)(4-\lambda)+2 \quad(=0) \\ & (\lambda-2)(\lambda-3) \quad(=0) \\ & \lambda=2, \quad 3 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1,A1 } \end{gathered}$		A1 each eigenvalue
	When $\lambda=2$, $\left[\begin{array}{cc} -1 & -1 \\ 2 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \end{array}\right]$ or $x+y=0 \mathrm{OE}$	M1		Correct equation used to find eigenvector for either $\lambda=2$ or $\lambda=3$
	$\left[\begin{array}{c}1 \\ -1\end{array}\right]$ or any multiple	A1		A correct eigenvalue found for $\lambda=2$
	When $\lambda=3$, $\left[\begin{array}{cc}-2 & -1 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ or $2 x+y=0$ OE $\left[\begin{array}{c}1 \\ -2\end{array}\right]$ or any multiple	A1	6	A correct eigenvalue found for $\lambda=3$
(b)	Using vectors above, required matrix columns must be multiples of $\left[\begin{array}{c} 1 \\ -2 \end{array}\right] \text { and }\left[\begin{array}{c} 1 \\ -1 \end{array}\right]$			Attempt to compare their eigenvectors
	Comparing with $\left[\begin{array}{cc}4 & b \\ a & -2\end{array}\right]$ gives	M1		with given matrix in correct order PI by correct value of a or b
	$a=-8$	A1		
	and $b=2$	A1	3	A1 each value
	Total		9	

Q6	Solution	Mark	Total	Comment
(a)	$\left[\begin{array}{c}4 \\ 1 \\ -2\end{array}\right]-\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}2 \\ 0 \\ -2\end{array}\right]$ does not match direction ratios of line or $\left[\begin{array}{c}2 \\ 0 \\ -2\end{array}\right] \times\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{l}-2 \\ -10 \\ -2\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$	B1	[Substituting and comparing with direction vector of line or showing vector product is not zero
(b)	Direction vectors for plane are $\left[\begin{array}{c} 3 \\ -1 \\ 2 \end{array}\right],\left[\begin{array}{c} 2 \\ 0 \\ -2 \end{array}\right]$	B1		Correct identification of one direction vector for plane, any multiples of these
	$\left[\begin{array}{c} 3 \\ -1 \\ 2 \end{array}\right] \times\left[\begin{array}{c} 2 \\ 0 \\ -2 \end{array}\right]$	M1		Both vectors correct (may have multiples, in any order) attempted
	$\left[\begin{array}{l} 10 \\ 2 \end{array}\right]$	A1		Correct for their vector product Watch signs if terms in vector product are in a different order
	$c=\left[\begin{array}{l} 2 \\ 1 \\ 0 \end{array}\right] \cdot\left[\begin{array}{l} 2 \\ 10 \\ 2 \end{array}\right]=14$	M1		Use of their normal vector and correct point eg $(4,1,-2)$ to find value for c
	Plane is $\mathbf{r} .\left[\begin{array}{l}1 \\ 5 \\ 1\end{array}\right]=7 \quad O E$	A1	5	cso

Q6 contd	Solution	Mark	Total	Comment
(c)	Equation of line perpendicular to plane and containing D is $\mathbf{r}=\left[\begin{array}{c} 8 \\ -2 \\ 6 \end{array}\right]+t\left[\begin{array}{l} 1 \\ 5 \\ 1 \end{array}\right]$ Meets plane when $\begin{gathered} (8+t)+5(-2+5 t)+(6+t)=7 \\ t=\frac{1}{9} \end{gathered}$ Hence for reflected point, $\begin{aligned} & t=2 \times \frac{1}{9} \\ & {\left[\begin{array}{l} 8 \\ -2 \\ 6 \end{array}\right]+\frac{2}{9}\left[\begin{array}{l} 1 \\ 5 \\ 1 \end{array}\right]=} \\ & \frac{1}{9}\left[\begin{array}{c} 74 \\ -8 \\ 56 \end{array}\right] \end{aligned}$	M1 m1 A1 B1F A1	5	Equation of line through D using their normal from (b) Correct use of their line and their plane to obtain linear equation in t Correct t value obtained Doubling their t value Reflected point coordinates correct
	Total		11	

Q8cont'd	Solution	Mark	Total	Comment
(d)	$\begin{aligned} & {\left[\begin{array}{ccc} 1 & 2 & k \\ 0 & 3 & 4 \\ -1 & 1 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} x \\ y \\ z \end{array}\right]} \\ & {\left[\begin{array}{l} x+2 y+k z \\ 3 y+4 z \\ -x+y-z \end{array}\right]=\left[\begin{array}{l} x \\ y \\ z \end{array}\right]} \end{aligned}$ $\begin{aligned} & 2 y+k z=0 \\ & 2 y+4 z=0 \\ & -x+y-2 z=0 \end{aligned}$ Hence $k=4$ Equation of line is $\frac{x}{-4}=\frac{y}{-2}=z \quad \mathrm{OE}$	M1 A1 A1 m1 A1	5	Use of $\mathbf{M v}=\mathbf{v}$ with at least two "equations" correct Fully correct with terms combined Using their equations to obtain Cartesian equations of line CSO
	Total		19	
	TOTAL		75	

