

A- LEVEL Mathematics

Further Pure 1 – MFP1 Mark scheme

6360 June 2015

Version 1: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aga.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment	
(a)	$\alpha + \beta = -3;$ $\alpha\beta = \frac{7}{2}$ (= 3.5)	B1; B1	2	If LHS is missing look for later evidence	
	$\alpha + \beta = 3$, $\alpha \beta = \frac{1}{2}$ (= 3.3)			before awarding the B1s.	
(b)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta (= 9-7)$	M1		$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ seen or used. PI	
	$(S=) \alpha^2 + \beta^2 - 2 = 2 - 2 = 0$	A1		Ft on wrong sign for $\alpha + \beta$	
	$(P=) \alpha^2 \beta^2 - (\alpha^2 + \beta^2) + 1 = \frac{45}{4} (=11.25)$	A1		Ft on wrong sign for $\alpha + \beta$	
	$x^2 - Sx + P \ (=0)$	M1		Using correct general form of LHS of eqn with ft substitution of c's S and P values.	
	Quadratic is $4x^2 + 45 = 0$ A1 Solution Soluti				
(c)	(Vals of $\alpha^2 - 1$ and $\beta^2 - 1$ are) $\pm i\sqrt{\frac{45}{4}}$	M1		PI Ft on c's quadratic provided roots are not real.	
	Values of α^2 and β^2 are $1 \pm i \sqrt{\frac{45}{4}}$	A1	2	OE Must see evidence of answer to (b) having been used.	
	Total		9		
(b)	Altn for first M1: $2(\alpha^2 + \beta^2) = -6(\alpha + \beta) - 7 - 7$				
(b)	Altn: A subst. of $y = x^2 - 1$ attempted in $2x^2 + 6x + 7 = 0$ (M1); $2(y+1)+6x+7=0$ (A1);				
		$2y+9 = -6x$, $(2y+9)^2 = 36x^2 = 36(y+1)$ (m1 full substitution);			
	$4y^2 + 36y + 81 = 36y + 36$ (A1 correct eqn with	h no brack	ets or fra	ctions)	
	$4y^2 + 45 = 0 \text{ (A1CSO as in main scheme)}$				

Q2	Solution	Mark	Total	Comment
(a)	Integrand is not defined at $x = 0$	E 1	1	OE
(b)	$\int \frac{x-4}{x^{1.5}} (dx) = \int (x^{-0.5} - 4x^{-1.5}) (dx)$	M1		Split into two terms with at least one term correct and in the form ax^n . PI by correct integration of $\int \frac{x-4}{x^{1.5}} dx$
	$=\frac{x^{0.5}}{0.5} - \frac{4x^{-0.5}}{-0.5} (+c)$	A1		condoning one slip. ACF
	$\int_0^4 \frac{x-4}{x^{1.5}} dx$ does NOT have a finite value since	B1		OE Dep. on at least one term after integration being of the form x^k , where k is negative, OE.
	as $x \to 0^{(+)}$, $x^{-0.5} \to \infty$	E 1	4	OE explanation. Dep. on no accuracy errors seen.
	Total		5	

Q3	Solution	Mark	Total	Comment
(a)	$(2+i)^3 = 2^3 + 3(2)^2i + 3(2)i^2 + i^3$	M1		OE Three of the 4 terms correct.
	$= 2^3 + 3(2)^2 i + 3(2)(-1) + (-1)i$	M1		$i^2 = -1$ used at least once
	= 2 + 11i	A1	3	NMS 0/3
(b)(i)	$(2+i)^3 + p(2+i) + q = 0$	M1		May see 2 + bi OE in place of $(2+i)^3$
	Re: $2 + 2p + q = 0$; Im: $b + p = 0$	m1		Equating Re parts and equating Im parts attempted. OE
	2 + 2p + q = 0; $11 + p = 0$	A1F		Two correct ft (on c's b value in (a))
	p = -11, q = 20	A1	4	equations CSO both required; AG for <i>p</i> .
(b)(ii)	[z-(2+i)][z-(2-i)]	B1		Either $[z-(2+i)][z-(2-i)]$ OE
				or $(2+i)(2-i)=5$ seen or used at any
				stage in (b)(ii) or (b)(iii).
	(Quadratic factor) $z^2 - 4z + 5$	B 1	2	$z^2 - 4z + 5$, terms in any order
(b)(iii)	$z^3 - 11z + 20 = (z^2 - 4z + 5)(z + 4)$	M1		OE method to find factor $(z+4)$ or root -4 Examples: Showing $f(-4)=0$;
				Using $2+i+2-i+\alpha=0$
	(Real root is) –4	A1	2	Eg $z^3 - 11z + 20 = 0$, (Real root) -4 2/2
	Total		11	
(b)(ii)(iii)	May see these answered holistically eg by starting with $z^3 - 11z + 20 = (z^2 - 4z + 5)(z + 4)$ (M1)(B1)			
	followed by the two correct answers (Quadratic factor) $z^2 - 4z + 5$, (B1) (real root) -4 (A1) order of answers can be reversed.			

M1 PI by later work OE At least one of $3x + 45 = 360n + \alpha$ $3x + 45 = 360n + 180 - \alpha$ ft c's sin ⁻¹ (1) $3x + 45 = 360n + 180 - \alpha$ ft c's sin ⁻¹ (1) $3x + 45 = 360n + 180 - \alpha$ ft c's sin ⁻¹ (1) $3x + 45 = 360n + 180 - \alpha$ ft c's sin ⁻¹ (1) $3x + 45 = 360n + 180 - \alpha$ ft c's sin ⁻¹ (1) $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = 120n^{\circ} - 5^{\circ}$, $x = 120n^{\circ} + 35^{\circ}$ A2,1,0 OE full set of correct solutions in degree written with like terms combined and fractions. (A1 if correct but unsimplified) (A0 if rads present in answer)	Q4	•	Solution	Mark	Total	Comment
$3x + 45^{\circ} = 360n^{\circ} + 30^{\circ},$ $3x + 45^{\circ} = 360n^{\circ} + 180^{\circ} - 30^{\circ}$ M1 $x = \frac{360n^{\circ} + 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = 120n^{\circ} - 5^{\circ}, x = 120n^{\circ} + 35^{\circ}$ M2 $x = \frac{360n^{\circ} + 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = 120n^{\circ} - 5^{\circ}, x = 120n^{\circ} + 35^{\circ}$ M1 $x = \frac{360n^{\circ} + 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = 120n^{\circ} - 5^{\circ}, x = 120n^{\circ} + 35^{\circ}$ M1 $x = \frac{360n^{\circ} + 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ Condone $2n\pi$ for $360n$ OE At least one or $3x + 45 = 360n + \alpha$ $x = \dots \text{ of } 3x + 45 = 360n + \alpha$	(a)		$\sin(3x+45^\circ)=\sin 30^\circ$	B 1		OE value in degrees for $\sin^{-1}(1/2)$ (= α) used
$3x + 45^{\circ} = 360n^{\circ} + 180^{\circ} - 30^{\circ}$ $x = \frac{360n^{\circ} + 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = 120n^{\circ} - 5^{\circ}, x = 120n^{\circ} + 35^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$,			
Condone $2n\pi$ for $360n$ $x = \frac{360n^{\circ} + 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = 120n^{\circ} - 5^{\circ}, x = 120n^{\circ} + 35^{\circ}$ The solution closest to 200° The solution closest to 200° The solution of the previous 5 marks have been scool and the solution of the previous 5 marks have been scool and the solution closest to 200° The solution closest close 200° T			$3x + 45^{\circ} = 360n^{\circ} + 30^{\circ}$,	3.54		
$x = \frac{360n^{\circ} + 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $\begin{cases} ** \} \\ x = 120n^{\circ} - 5^{\circ}, x = 120n^{\circ} + 35^{\circ} \end{cases}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ} \end{cases}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ} \end{cases}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ} \end{cases}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ} \end{cases}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ} \end{cases}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ} \end{cases}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ} \end{cases}$			$3x + 45^{\circ} = 360n^{\circ} + 180^{\circ} - 30^{\circ}$	M1		
$x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = 120n^{\circ} - 5^{\circ}, x = 120n^{\circ} + 35^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$						Condone $2n\pi$ for $360n$
$x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $x = 120n^{\circ} - 5^{\circ}, x = 120n^{\circ} + 35^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$			260 0 200 470			OF At least one correct rearrangement to
$x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $\{*\}$ $x = 120n^{\circ} - 5^{\circ}, x = 120n^{\circ} + 35^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$			$x = \frac{360n^3 + 30^3 - 45^3}{300000000000000000000000000000000000$	m1		· ·
$x = \frac{360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}}{3}$ $\{*\}$ $x = 120n^{\circ} - 5^{\circ}, x = 120n^{\circ} + 35^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$			_	1111		
(b) $x = 120n^{\circ} - 5^{\circ}, x = 120n^{\circ} + 35^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$ $n = 2 \text{ in } x = 120n^{\circ} - 5^{\circ} \text{ gives } 235^{\circ}, \text{ the solution closest to } 200^{\circ}$			$360n^{\circ} + 180^{\circ} - 30^{\circ} - 45^{\circ}$			
(b) $x = 120n^{\circ} - 5^{\circ}$, $x = 120n^{\circ} + 35^{\circ}$ A2,1,0 OE full set of correct solutions in degration written with like terms combined and fractions. (A1 if correct but unsimplified) (A0 if rads present in answer) 1 235 but only award this mark if at least of the previous 5 marks have been sco			x =			Condone 2nn 101 300n
(b) $x = 120n^{\circ} - 5^{\circ}$, $x = 120n^{\circ} + 35^{\circ}$ A2,1,0 OE full set of correct solutions in degration written with like terms combined and fractions. (A1 if correct but unsimplified) (A0 if rads present in answer) 1 235 but only award this mark if at least of the previous 5 marks have been sco			{*}			
written with like terms combined and fractions. (A1 if correct but unsimplified) (A0 if rads present in answer) $n = 2$ in $x = 120n^{\circ} - 5^{\circ}$ gives 235°, the solution closest to 200° B1 235 but only award this mark if at least of the previous 5 marks have been sco				A2,1,0		OE full set of correct solutions in degrees
(b) $n = 2$ in $x = 120n^{\circ} - 5^{\circ}$ gives 235°, the solution closest to 200° B1 (A1 if correct but unsimplified) (A0 if rads present in answer) 235 but only award this mark if at least of the previous 5 marks have been sco			x-120n-5, $x-120n+35$, , , -		written with like terms combined and no
(b) $n = 2$ in $x = 120n^{\circ} - 5^{\circ}$ gives 235°, the solution closest to 200° B1 (A0 if rads present in answer) 235 but only award this mark if at least of the previous 5 marks have been sco						fractions.
(b) $n = 2$ in $x = 120n^{\circ} - 5^{\circ}$ gives 235°, the solution closest to 200° B1 235 but only award this mark if at least of the previous 5 marks have been sco						(A1 if correct but unsimplified)
solution closest to 200° B1 235 but only award this mark if at least of the previous 5 marks have been sco					5	(A0 if rads present in answer)
1 of the previous 5 marks have been sco	(b)		$n = 2$ in $x = 120n^{\circ} - 5^{\circ}$ gives 235°, the			
			solution closest to 200°	B 1		235 but only award this mark if at least 4
Total 6						of the previous 5 marks have been scored
					6	
Condone missing degree symbols		(.)			C 11	
(a) Lots of different forms of full sets of solutions can score full marks.		(a)				
Eg $3x + 45 = 180n + (-1)^n 30$ (B1M1), $x = 60n + (-1)^n 10 - 15$ (m1A2)			Eg $3x + 45 = 180n + (-1)^n 30$ (B1M1), $x = 60n + (-1)^n 10 - 15$ (m1A2)			
(a) Example, a cand. stops at {*} scores B1M1m1A1. A cand. who simplifies {*} incorrectly also scores		(a)	Example, a cand. stops at {*} scores B1M1	m1A1. A	cand. wh	o simplifies {*} incorrectly also scores 4/5

Q5	Solution	Mark	Total	Comment
(a)	$\begin{bmatrix} -2 & c \\ d & 3 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$	M1		PI, allowing for recovery, by at least one
	$\begin{bmatrix} d & 3 \end{bmatrix} 2 \begin{bmatrix} -1 & 1 \end{bmatrix}$			correct element in evaluation of LHS or by at least one correct linear equation
	$\lceil -10 + 2c \rceil \lceil -2 \rceil$			at roust one correct metal equation
	$\begin{bmatrix} -10+2c \\ 5d+6 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix};$			
	-10 + 2c = -2, $5d + 6 = 1$	M1		At least one correct equation
	c = 4	A1		c = 4
(b)(i)	d = -1	A1	4	d = -1
	$\mathbf{B}^2 = \begin{bmatrix} 0 & 4 \\ -4 & 0 \end{bmatrix}$	B1		
	$\mathbf{B}^4 = \begin{bmatrix} -16 & 0 \\ 0 & -16 \end{bmatrix}$			
	$=-16\begin{bmatrix}1&0\\0&1\end{bmatrix}=-16\mathbf{I}$	B 1	2	Accept either form or ' = $k\mathbf{I}$, $k=-16$ ' after
				seeing $\begin{bmatrix} -16 & 0 \\ 0 & -16 \end{bmatrix}$.
/l=\/::\	F = -3			
(b)(ii)	$\mathbf{B} = \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{bmatrix} = 2 \begin{vmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{vmatrix}$			Sight of $2\begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$ OE in trig form
	$\begin{vmatrix} \mathbf{B} = \begin{vmatrix} \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{vmatrix} = 2 \begin{vmatrix} 2 & 2 \\ \sqrt{2} & \sqrt{2} \end{vmatrix}$	M1		Sight of $2 \begin{vmatrix} 2 \\ - \end{vmatrix}$ OE in trig form
	$\begin{bmatrix} -\sqrt{2} & \sqrt{2} \end{bmatrix} & \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$			$\left -\frac{\sqrt{2}}{\sqrt{2}} \right = \frac{\sqrt{2}}{\sqrt{2}}$
	$\begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} \cos 315 & -\sin 315 \end{bmatrix}$			PI by award of at least B1B1 below $\begin{bmatrix} \cos(-45) & -\sin(-45) \end{bmatrix} \begin{bmatrix} 2 & 0 \end{bmatrix}$
	$ = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \cos 315 & -\sin 315 \\ \sin 315 & \cos 315 \end{bmatrix} $	A1		OE eg $\begin{bmatrix} \cos(-45) & -\sin(-45) \\ \sin(-45) & \cos(-45) \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
				PI by award of B1B2 below
	(ie combination of an) enlargement and	B 1		'Enlargement' and 'rotation' OE with no
	(a) rotation Enlargement with scale factor 2 and	B2,1,0	5	extra transformation OE
	rotation through 315° (about <i>O</i>)	D2,1,0	3	eg Enlargement sf 2, clockwise rotation 45°
				If not B2 then B1 for 'enlargement sf ±2 and
	Altn for M1A1 in (b)(ii)			angle of rotation \pm an odd multiple of 45°.'
	$\lceil \sqrt{2} \sqrt{2} \rceil \lceil 0101 \rceil \lceil 0 \sqrt{2} \sqrt{2} 2\sqrt{2} \rceil$			Attempting to find the image of vertices
	$ \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{bmatrix} \begin{bmatrix} 0101 \\ 0011 \end{bmatrix} = \begin{bmatrix} 0 & \sqrt{2} & \sqrt{2} & 2\sqrt{2} \\ 0 - \sqrt{2} & \sqrt{2} & 0 \end{bmatrix} $	(M1)		of a square under B , with at least two non-
		(A1)		origin images correct. (Same PI as above) Correct image of square under B seen or
(b)/:::\	17			used. (Same PI as above)
(b)(iii)	$\mathbf{B}^{17} = [k^2]^2 \mathbf{I} \mathbf{B}$	M1		An appreciation that $\mathbf{B}^8 = k^2 \mathbf{I}$ OE eg
				$\mathbf{B}^{17} = (c's sf)^{17} \begin{bmatrix} \cos(17\alpha) & -\sin(17\alpha) \\ \sin(17\alpha) & \cos(17\alpha) \end{bmatrix},$
				where $\alpha = c$'s angle of rotation
	$\left[\begin{array}{ccc} \sqrt{2} & \sqrt{2} \end{array}\right]$			=
	$= 65536 \begin{vmatrix} \sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{vmatrix}$	A1	2	ACF, no trig., eg $2^{16}\begin{bmatrix} \sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{bmatrix}$
	Total		13	
/L\/!!!\	P1 p 17	1		Ll. 17. 2150 2 OF 354
(b)(iii)	Example: \mathbf{B}^{17} represents 'enlargement sf 2^{17}	and rotati	on throug	gn angle 1/×315° OE scores M1

Q6	Solution	Mark	Total	Comment
(a)	-3 3 x	B1		hyperbola with the two branches covering the correct quadrants and no zero gradients
		B1	2	Only intercepts are on x -axis at 3 and -3 . Condone correct coordinates in place of values of intercepts
(b)	k = -3 Asymptotes of C_1 are $\frac{x}{3} = \pm \frac{y}{4}$ so	B1F		Seen or used. Ft on minus c's intercept with +'ve x-axis
	asymptotes of C_2 are $\frac{x+3}{3} = \pm \frac{y}{4}$	M1		Either $\frac{x-k}{3} = \pm \frac{y}{4}$ or $\frac{x+k}{3} = \pm \frac{y}{4}$ OE If not in terms of k , ft c's k value.
		A1	3	$CSO \frac{x+3}{3} = \pm \frac{y}{4} OE$
	Total		5	
		I		

Q7	Solution	Mark	Total	Comment
(a)(i)	$f(x) = 2x^3 + 5x^2 + 3x - 132000$			
	f(39) = -5640 (<0); f(40) = 4120 (>0);	M1		f(39) and f(40) both considered.
	Since sign change (and f continuous),			All values and working correct plus relevant
	$39 < \alpha < 40$	A1	2	concluding statement involving 39 and 40.
(a)(ii)	$f'(x) = 6x^2 + 10x + 3$	B1		PI by eg f'(40) = 10003
	$(x_2 =) 40 - \frac{f(40)}{f'(40)}$.	M1		Seen or used to indicate NR applied
	= 39.59 (to 2 dp)	A1	3	Must be 39.59 Answer only, NMS scores 0 /3
(b)	$\sum_{r=1}^{n} 2r(3r+2) = \sum_{r=1}^{n} (6r^{2} + 4r)$			
	$= 6\sum_{r=1}^{n} r^2 + 4\sum_{r=1}^{n} r$	M1		$\sum_{r=1}^{n} (\alpha r^2 + \beta r) = \alpha \sum_{r=1}^{n} r^2 + \beta \sum_{r=1}^{n} r$ PI by the next line.
	$= \left\{ 6\frac{n}{6}(n+1)(2n+1) + 4\frac{n}{2}(n+1) \right\}$	m1 A1		OE Either term inside { } correct OE Both terms inside { } correct
	= n(n+1)[2n+1+2]	m1		$\{ \} = n(n+1)[\dots]$ Taking out factor
				n(n+1)
	= n(n+1)(2n+3)	A1		CSO form of AG. $n(n+1)(2n+3)$
			5	convincingly obtained Answer only, NMS scores 0 /5
(c)(i)	$(\log_8 4^r =) \frac{2}{3}r$	B1	1	$\frac{2}{3}r$. (Condone $\lambda = \frac{2}{3}$)
(c)(ii)	$g(r) = (3r+2)\log_8 4^r = \frac{1}{3} \times 2r(3r+2)$			
	$\sum_{r=k+1}^{60} g(r) = \sum_{r=1}^{60} g(r) - \sum_{r=1}^{k} g(r)$	M1		$\sum_{r=k+1}^{60} \dots = \sum_{r=1}^{60} \dots - \sum_{r=1}^{k} \dots$ seen or attempted.
	$\sum_{r=1}^{60} g(r) = \frac{60}{3} \times 61 \times 123 \ (= 150060)$	B1F		OE Ft on c's values for λ , p and q in $30\lambda(60+p)(120+q)$
	Need greatest integer <i>k</i> such that			
	$150060 - \frac{k}{3}(k+1)[2k+3] > 106060$			
	$\frac{k}{3}(k+1)[2k+3] < 44000$	A1		A correct 'cubic' inequality for <i>k</i> obtained correctly
	$2k^3 + 5k^2 + 3k - 132000 < 0$			
	(Required greatest value of) k is 39	A1	4	CSO. (NMS $k = 39 \text{ scores } 0/4$)
	Total		15	
(a)	Condone 'root', 'solution', 'x', 'it' in place of	of α .		

Q8	Solution	Mark	Total	Comment
(a)	y=1	B1	1	OE eg $y - 1 = 0$.
				If more than one asymptote then B0
(b)	$k = \frac{x(x-3)}{x^2+3}$	M1		Elimination of <i>y</i>
	$k(x^{2} + 3) = x(x - 3)$ $(k - 1)x^{2} + 3x + 3k = 0 $ (*)	A1		A correct quadratic equation in the form $Ax^2 + Bx + C = 0$, PI by later work
	y = k intersects C so roots of (*) are real	3.54		
	$b^2 - 4ac = 3^2 - 4(k-1)(3k)$	M1		$b^2 - 4ac$ in terms of k; ft on c's quadratic
	$3^2 - 4(k-1)(3k) \ge 0$	A1		provided <i>a</i> and <i>c</i> are both in terms of <i>k</i> A correct inequality where <i>k</i> is the only unknown.
	$9-12k^{2}+12k \ge 0, 12k^{2}-12k-9 \le 0$ ie $4k^{2}-4k-3 \le 0$	A1	5	CSO AG Be convinced
(c)	$(2k+1)(2k-3) (\leq 0)$	M1		Method to find critical values from printed quadratic in (b). PI by correct critical
	Critical values are -0.5 and 1.5	A1		values stated
	Sub $k = -0.5$ in (*) gives $x^2 - 2x + 1 = 0$ Sub $k = 1.5$ in (*) gives $x^2 + 6x + 9 = 0$	m1		Subst of either -0.5 or 1.5 into quadratic eq to reach a quadratic in x with equal roots
	So $(1, -0.5)$ is a stationary point	A1		Correct coordinates
	So $(-3, 1.5)$ is a stationary point	A1		Correct coordinates
			5	NMS scores 0/5
	Total		11	
(b)	For final A1CSO must see intermediate step eg either $12k^2 - 12k - 9 \le 0$ (as in soln abo			-
		-,		
(b)	SC for $(k-1)x^2 - 3x + 3k = 0$, ie sign of	coefficier	nt of x inc	orrect, a max of M1A0M1A1A0.